STUDENT NAME:

Linear Algebra Graduate Comprehensive Exam, January 2016 Worcester Polytechnic Institute

Work out 4 category I problems and 1 category II problem, or work out 3 category I problems and 2 category II problems. Write down detailed proofs of every statement you make.

No Books. No Notes. No calculators.

Category I problems

problem I.1

Let A be the matrix $A=\left[\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right]$

Compute

- (a) the rank of A,
- (b) the trace of A,
- (c) the determinant of A
- (d) the characteristic polynomial of A
- (e) all the eigenvalues of A
- (f) find corresponding eigenvectors
- (g) Compute $(2I A)^3 2(2I A)$

Does the answer to (g) surprise you? Can you formulate a relation of A to its characteristic polynomial?

- (h) Is A diagonalizable? If so, find an orthogonal matrix Q such that $A = Q\Lambda Q^T$
 - (i) Compute A^TA and AA^T and their eigenvalues and eigenvectors.

(j) Compute e^A and comment (without computing it) on the behavior of the solution to $\frac{d\vec{u}}{dt} = A\vec{u}, \vec{u}(0) = \vec{u}_0$.

problem I.2

Consider the linear map $T: \mathbb{P}_3 \to \mathbb{P}_2$ defined by differentiation, i.e., by $T(p) = p' \in \mathbb{P}_2$ for $p \in \mathbb{P}_3$. Find the matrix representation of T with respect to the bases

$$\{1+x,1-x,x+x^2,x^2-x^3\}$$
 for \mathbb{P}_3 and $\{1,x,x^2\}$ for \mathbb{P}_2 .

problem I.3

Compute the matrix of transformation of coordinates (back and forth) from the canonical basis in \mathbb{R}^3 to the basis

$$\mathcal{B} = \left\{ \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 2 \\ 2 \end{array} \right), \left(\begin{array}{c} 3 \\ 0 \\ 1 \end{array} \right) \right\}$$

(these vectors' coordinates are with respect to the canonical basis).

problem I.4

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 1 \end{pmatrix}.$$

Find the least square solution of Ax = b.

problem I.5

The set of all real $n \times n$ matrices, denoted $\mathbb{R}^{n \times n}$, is a vector space under the usual operations of matrix addition and scalar multiplication. Consider $\mathcal{S} \equiv \{A \in \mathbb{R}^{n \times n} : A^T = -A\}$, the set of all skew-symmetric matrices in $\mathbb{R}^{n \times n}$.

- (a) Show that S is a subspace of $\mathbb{R}^{n \times n}$.
- (b) Show that $P: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ defined by $P(A) = \frac{1}{2} (A A^T)$ is the projection of $\mathbb{R}^{n \times n}$ onto S that is orthogonal with respect to the Frobenius inner product.

Category II problems

problem II.1

Prove that if A is a non-singular $n \times n$ matrix, then there exists a polynomial f(t) such that Af(A) = f(A)A = I.

problem II.2

Prove that any square $n \times n$ matrix A can be obtained as a limit of matrices $A_l \to A$ that have n distinct eigenvalues.